Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA.

نویسندگان

  • S Salamitou
  • O Raynaud
  • M Lemaire
  • M Coughlan
  • P Béguin
  • J P Aubert
چکیده

The binding specificity of the duplicated segments borne by Clostridium thermocellum endoglucanase CelD and by the cellulosome-integrating protein CipA was investigated. The fusion protein CelC-DSCelD, in which the duplicated segment of CelD was fused to the COOH terminus of endoglucanase CelC, bound with an affinity of 4.7 x 10(7) M-1 to the fusion protein MalE-RDCipA, in which the seventh receptor domain of CipA was grafted onto the COOH terminus of the Escherichia coli maltose-binding protein MalE. The affinity of CelC-DSCelD for the homologous chimeric protein MalE-RDORF3p, carrying the receptor of the surface protein ORF3p, was 6.9 x 10(6) M-1. The fusion protein CelC-DSCipA, in which the duplicated segment of CipA was grafted onto the COOH terminus of CelC, did not bind detectably to MalE-RDCipA or MalE-RDORF3p. However, Western blotting (immunoblotting) experiments indicated that the duplicated segment of CipA was able to bind to a set of C. thermocellum proteins which are different from those recognized by the duplicated segment of CelD. These results argue against the hypothesis that ORF3p interacts with the duplicated segment of CipA. More probably, ORF3p binds to individual cellulases and hemicellulases harboring duplicated segments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome.

The Clostridium josui cipA and celD genes, encoding a scaffolding-like protein (CipA) and a putative cellulase (CelD), respectively, have been cloned and sequenced. CipA, with an estimated molecular weight of 120,227, consists of an N-terminal signal peptide, a cellulose-binding domain of family III, and six successive cohesin domains. The molecular architecture of C. josui CipA is similar to t...

متن کامل

A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA.

The cellulosome-integrating protein CipA, which serves as a scaffolding protein for the cellulolytic complex produced by Clostridium thermocellum, comprises a COOH-terminal duplicated segment termed the dockerin domain. This paper reports the cloning and sequencing of a gene, termed sdbA (for scaffoldin dockerin binding), encoding a protein which specifically binds the dockerin domain of CipA. ...

متن کامل

Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA.

This article reports the characterization of the Clostridium thermocellum SdbA protein thought to anchor the cellulosome to the bacterial cell surface. The NH2-terminal region of SdbA consists of a cohesin domain which specifically binds the dockerin domain of the cellulosomal scaffolding protein CipA. The COOH-terminal region consists of a triplicated segment, termed SLH repeats, which is pres...

متن کامل

Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase.

The expression of scaffoldin-anchoring genes and one of the major processive endoglucanases (CelS) from the cellulosome of Clostridium thermocellum has been shown to be dependent on the growth rate. For the present work, we studied the gene regulation of selected cellulosomal endoglucanases and a major xylanase in order to examine the previously observed substrate-linked alterations in cellulos...

متن کامل

Comparative characterization of all cellulosomal cellulases from Clostridium thermocellum reveals high diversity in endoglucanase product formation essential for complex activity

BACKGROUND Clostridium thermocellum is a paradigm for efficient cellulose degradation and a promising organism for the production of second generation biofuels. It owes its high degradation rate on cellulosic substrates to the presence of supra-molecular cellulase complexes, cellulosomes, which comprise over 70 different single enzymes assembled on protein-backbone molecules of the scaffold pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 176 10  شماره 

صفحات  -

تاریخ انتشار 1994